this to

$$
\begin{align*}
a_{n}(k) & =(-1)^{n} 2 \int_{0}^{\infty} e^{-t^{2}} J_{2 n+1}(2 k t) d t \\
& =(-1)^{n} \sqrt{\pi} e^{-k^{2} / 2} I_{n+(1 / 2)}\left(k^{2} / 2\right) \tag{5}\\
& =\sum_{r=0}^{n} \frac{(n+r)!}{r!(n-r)!} l^{-2 r-1}\left[(-1)^{r+n}-e^{-k^{2}}\right], \quad n=0,1,2 \cdots .
\end{align*}
$$

This expression may easily be seen to be consistent with (4).
Acknowledgments. This work was supported by the Office of Naval Research.
Department of Physics, University College London, Gower Street,
London, W. C. 1.

1. D. Harris III, "On the line-absorption coefficient due to Doppler effect and damping," Astrophys. J., v. 108, 1948, p. 112-115.
2. D. G. Hummer, "Noncoherent scattering. I. The redistribution functions with Doppler broadening," Monthly Notices Roy. Astronom. Soc., v. 125, 1963, p. 21-37.
3. W. L. Miller \& A. R. Gordon, "Numerical evaluation of infinite series and integrals which arise in certain problems of linear heat flow, electrochemical diffusion, etc.," J. Chem. Phys., v. 35, 1935, p. 2785-2884.
4. J. B. Rosser, Theory and Application of $\int_{0}^{\infty} e^{-x^{2}} d x$ and $\int_{0}^{z} e^{-p y^{2}} d y \int_{0}^{y} e^{-x^{2}} d x$, Mapleton House, Brooklyn, N. Y., 1948.
5. B. Lohmander \& S. Ritisten, "Tables of the function $y=e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t$," Kungl. Fysiogr. Sällsk. i Lund Förh., v. 28, 1958, p. 45-52.
6. H. M. Terrill \& L. SWeeny, "An extension of Dawson's table of the integral of $e^{x^{2}}$," J. Franklin Inst., v. 237, 1944, p. 495-497; "Table of the integral of $e^{x^{2}}$," ibid., v. 238, 1944, p. 220-222.
7. National Physical Laboratory, Modern Compuiing Methods, 2nd edition, H. M. Stationery Office, London, 1961.
8. C. W. Clenshaw, "A note on the summation of Chebyshev series," MTAC, v. 9, 1955, p. 118-120; see also [7], Chapter 8.

First One Hundred Zeros of $J_{0}(x)$ Accurate to 19 Significant Figures

By Henry Gerber

1. Introduction. Some physical investigations require a knowledge of accurate values of the zeros of the Bessel function $J_{0}(x)$. The most extensive values previously published are those of the British Association for the Advancement of Science [1], which consist of 10 decimal places. More accurate values have now been computed, and are presented in Table 1. The minimum accuracy of the tabulated zeros is 19 significant figures.
2. Method of Computation. Two methods were used to compute the roots. The first twelve roots were computed by the method of "false position." The values of

Table 1
The first one hundred roots of $J_{0}(x)=0$
($n=$ Number of Zero)

n	x_{n}	n	x_{n}
1	2.404825557695772769	51	159.43661116426314632
2	5.520078110286310649	52	162.57818866894667752
3	8.653727912911012216	53	165.71976674795502087
4	11.791534439014281615	54	168.86134536923582569
5	14.930917708487785948	55	172.00292450307820021
6	18.071063967910922545	56	175.14450412190274306
7	21.211636629879258960	57	178.28608420007377068
8	24.352471530749302736	58	181.42766471373105079
9	27.49347913204025479	59	184.56924564063871814
10	30.63460646843197512	60	187.71082696004935978
11	33.77582021357356869	61	190.85240865258152232
12	36.91709835366404398	62	193.99399070010911979
13	40.05842576462823929	63	197.13557308566141474
14	43.19979171317673036	64	200.27715579333241178
15	46.34118837166181402	65	203.41873880819864617
16	49.48260989739781717	66	206.56032211624447365
17	52.62405184111499603	67	209.70190570429407520
18	55.76551075501997931	68	212.84348955994948275
19	58.90698392608094213	69	215.98507367153401316
20	62.04846919022716988	70	219.12665802804056746
21	65.18996480020686044	71	222.26824261908431434
22	68.33146932985679827	72	225.40982743485932990
23	71.47298160359373282	73	228.55141246609881330
24	74.61450064370183788	74	231.69299770403853878
25	77.75602563038805504	75	234.83458314038324102
26	80.89755587113762786	76	237.97616876727566286
27	84.03909077693819016	77	241.11775457726802251
28	87.18062984364115365	78	244.25934056329568256
29	90.32217263721048006	79	247.40092671865282485
30	93.46371878194477417	80	250.54251303696995547
31	96.60526795099626878	81	253.68409951219308100
32	99.74681985868059647	82	256.82568613856441302
33	102.88837425419479460	83	259.96727291060447157
34	106.02993091645161551	84	263.10885982309547069
35	109.17148964980538355	85	266.25044687106588012
36	112.31305028049490963	86	269.39203404977606714
37	115.45461265366693963	87	272.53362135470493145
38	118.59617663087253172	88	275.67520878153745385
39	121.73774208795096296	89	278.81679632615308658
40	124.87930891323294604	90	281.95838398461491985
41	128.02087700600832408	91	285.09997175315956454
42	131.16244627521391461	92	288.24155962818769644
43	134.30401663830546610	93	291.38314760625521224
44	137.44558802028427779	94	294.52473568406495146
45	140.58716035285429655	95	297.66632385845894252
46	143.72873357368973253	96	300.80791212641113477
47	146.87030762579664959	97	303.94950048502058111
48	150.01188245695475749	98	307.09108893150503911
49	153.15345801922789249	99	310.23267746319496095
50	156.29503426853352382	100	313.37426607752784472

$J_{0}(x)$ corresponding to a given trial root x were calculated by direct interpolation of the Harvard tables [2], which give $J_{0}(x)$ accurate to 18 decimal places. For $0 \leqq x \leqq 25$ the argument increment h is 0.001 ; for $25<x \leqq 100$ the increment is 0.01 . Seven terms of the Newton-Bessel central difference formula [3] were used in the interpolation. This formula requires eight tabulated values of $J_{0}\left(x_{0}+m h\right)$, where

$$
\begin{aligned}
& x_{0}=\text { greatest tabulated argument not exceeding } x \\
& m= \pm 1, \pm 2, \pm 3,-4
\end{aligned}
$$

This method of computation has two advantages. First, in the vicinity of a zero of $J_{0}(x)$ the tabulated values consist of only 14 to 16 significant figures. The double-precision method of programming the IBM 7090 computer permits calculations with 17 significant digits. Thus, the above values of $J_{0}\left(x_{0}+m h\right)$, which serve as "constants" for the interpolation process, can be entered into the computer without error.

Secondly, the interpolation variable u is given by the relationship

$$
\begin{equation*}
u=\left(x-x_{0}\right) / h \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{0}<x<x_{0}+h \tag{2}
\end{equation*}
$$

The number of significant figures in the root, x, is thus equal to the sum of the number of significant figures in u and x_{0}. An examination of the interpolation formula shows that fewer than two significant digits are lost because of round-off error. Consequently the variable, u, can be calculated accurate to 15 significant figures. Interpolation of the Harvard tables by means of double-precision computation thus gives the roots accurate to 18 decimal places for $x \leqq 25$, and 17 decimal places for $25<x<100$.

The roots of $J_{0}(x)$ can also be computed by the following asymptotic series given by Bickley and Miller [4]. Let

$$
\begin{equation*}
c_{n}=1 /(4 n-1) \pi \quad n=1,2,3 \cdots \tag{3}
\end{equation*}
$$

The nth root $j_{0, n}$ is then given by the expression

$$
\begin{align*}
& j_{0, n}=\left(n-\frac{1}{4}\right) \pi+\frac{c_{n}}{2}-\frac{31 c_{n}{ }^{3}}{6}+\frac{3779 c_{n}{ }^{5}}{15}-\frac{6277237 c_{n}{ }^{7}}{210} \\
&+\frac{2092163573 c_{n}{ }^{9}}{315}-\frac{8249725736393 c_{n}^{11}}{3465} \tag{4}\\
&+\frac{847496887251128654 c_{n}^{13}}{675675} \cdots
\end{align*}
$$

The first one hundred roots were computed by means of Eq. (4). For n equal to or larger than 11, roots calculated by the two methods agree to 17 decimal places. This agreement confirms the validity of Eq. (4), and confirms the accuracy of the corresponding zeros in Table 1. It is interesting to note that discrepancies in the 10th decimal place of x_{n} occur between the data of Table 1 and the earlier tables at $n=4,5,8,41,45,85,95$, and 100 . These differences, which are all less than $1.2 \times$ 10^{-10}, are presumably due to errors in the previous calculations.
3. Acknowledgments. The author gratefully acknowledges the suggestions of Mr. Charles R. Newman for programming the computer.

Naval Ordnance Laboratory
White Oak, Maryland

1. British Association for the Advancement of Science, Mathematical Tables, v. 6: Bessel Functions, Part I, Cambridge University Press, Cambridge, 1950.
2. Harvard Computation Laboratory, Tables of the Bessel Functions of the First Kind of Orders Zero and One, Harvard University Press, Cambridge, Massachusetts, 1947.
3. Ibid., p. xix-xxii.
4. W. G. Bickley \& J. C. P. Miller, Notes on the Evaluation of Zeros and Turning Values of Bessel Functions, Phil. Mag. 36, 1945, p. 121-133.

Polylogarithms, Dirichlet Series, and Certain Constants

By Daniel Shanks

The polylogarithms $F_{s}(z)$ are defined by

$$
\begin{equation*}
F_{s}(z)=\sum_{m=1}^{\infty} \frac{z^{m}}{m^{s}} \tag{1}
\end{equation*}
$$

for $|z|<1$ and for the real part of $s \geqq 0$, and by analytic continuation for other values of z and s. They can be regarded as functions of z, with a parameter s, given by the power series (1), or as functions of s, with a parameter z, given by the Dirichlet series (1).

Recently [1] we discussed the Dirichlet series defined by

$$
\begin{equation*}
L_{a}(s)=\sum_{k=0}^{\infty} \frac{\left(\frac{-a}{2 k+1}\right)}{(2 k+1)^{s}} \tag{2}
\end{equation*}
$$

and its analytic continuation, where $\left(\frac{-a}{2 k+1}\right)$ is the Jacobi symbol. It is expressible in closed form for three-quarters of all combinations of integers a and s; namely, for $s \leqq 1$ and all a, for s even and >1 if $a<0$, and for s odd and >1 if $a>0$.

The remaining, non-closed form $L_{a}(n)$ for $a= \pm 2$, ± 3, and ± 6, with $n \leqq 10$, were computed [1] by a device, which (in essence) is based on the fact that all of the so-called characters modulo 8,12 , or 24 are real. In contrast, the corresponding $L_{a}(n)$ for $a= \pm 5, \pm 7$, and ± 10, say, which were also desired, are not obtainable by that method, unless it is modified, since now some of the characters are complex.

We did, however, express $L_{a}(s)$ as a linear combination of the functions $S_{s}(x)$ or $C_{s}(x)$ for various values of x determined by the integer a [1, equations (24)-(27)]. These functions [1, equation (18)] are defined by

$$
\begin{align*}
& S_{s}(x)=\sum_{k=0}^{\infty} \frac{\sin 2 \pi(2 k+1) x}{(2 k+1)^{s}} \\
& C_{s}(x)=\sum_{k=0}^{\infty} \frac{\cos 2 \pi(2 k+1) x}{(2 k+1)^{s}} \tag{3}
\end{align*}
$$

Received July 23, 1963.

